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Abstract. A reduction procedure for Jacobi manifolds is described in the algebraic setting
of Jacobi algebras. As applications, reduction by arbitrary submanifolds, distributions and
the reduction of Jacobi manifolds with symmetry are discussed. This generalized reduction
procedure extends the well known reduction procedures for symplectic, Poisson, contact and
co-symplectic structures.

1. Introduction

Jacobi manifolds were introduced by A Lichnerowicz as a rich geometrical notion extending
several important geometrical structures, including among others, symplectic, Poisson,
contact and co-symplectic [Li78]. However, it is true that conceptually Jacobi manifolds
arise from the notion of local Lie algebras, i.e. Lie algebras on spaces of smooth sections
of vector bundles with a locality property [Sh74], [Ki76], [Gu84].

In this paper we analyse a geometrical reduction procedure for Jacobi manifolds. It
is well known that reduction is a natural geometrical process in the categories of Poisson,
symplectic, contact and co-symplectic manifolds [Ma86], [Ma74], [Al89] and also in the
category of Poisson supermanifolds [Ca90]. It is thus natural to ask if there is a natural
mechanism for the reduction of Jacobi manifolds. It so happens that the adequate way to
address such a generalization is using an algebraic formulation as proposed in [Gr94] or
[Ki93] for Poisson manifolds and in [Ma96] for Nambu manifolds. The algebraic approach
benefits from the natural duality between algebras of functions and sets. We will use such
an approach here and show that there is a natural generalization of this algebraic reduction
procedure to the category of Jacobi manifolds and Jacobi algebras [Gr92].

This mechanism allows us to construct new Jacobi manifolds out of simple ones very
much like symplectic reduction offers a simple way to construct complicated (from the
topological point of view) symplectic manifolds from ‘simple’ symplectic manifolds. As a
byproduct of these ideas we will be able to offer another interpretation of several theorems
concerning the existence of Jacobi structures on certain submanifolds and projections of
Jacobi manifolds [Ju84], [Da91].

There is a striking similarity between Jacobi manifolds and certain algebraic structures
that have arisen recently in quantum field theories called BV-algebras and some of their
generalizations [Wi90], [Ge94], [Sc95]. In a sense that will be discussed in forthcoming
papers, the Jacobi algebras are one instance of a classical limit of a generalized notion of
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BV-algebras. This remark raises the problem of quantizing Jacobi manifolds as a question
of physical interest.

It is worth pointing out that the algebraic approach to the reduction of geometric
structures focuses the attention on the way to reproduce the initial geometrical structures
on algebras constructed from the initial one using simple algebraic constructions such as
guotienting out by ideals and restricting to suitable subalgebras. These constitute in fact
the two elementary steps in the reduction process. This is very much a reminder of the
procedure of ‘localization’ in algebraic geometry even though the outcome is very different.

The paper is organized as follows. We will review succintly some of the main features
of Jacobi manifolds that will be used in the paper in section 2, in particular we will review
the characterization of Jacobi algebras and the role of derivations of the algebra of smooth
functions. In section 3 we will describe the algebraic reduction procedure for associative
commutative algebras and for associative commutative algebras with a Lie algebra structure
(but not necessarily Poisson algebras). Then we will discuss the reduction of Jacobi algebras,
i.e. algebras of functions of Jacobi manifolds with respect to an ideal, a submanifold and a
distribution, and in section 4 we will compare these results with the well known reduction
procedures in symplectic, Poisson etc, manifolds.

2. Jacobi manifolds and Jacobi algebras

2.1. Geometric and algebraic characterization of Jacobi manifolds

Definition 1. A Jacobi manifold [Li78] is a tripl€M, A, X) whereM is a smooth manifold,
A is a bivector andX is a vector field defined oM, such that they satisfy the relations:
() [A, A] =2X A A,
(i) [X,A]l =0.

In the previous definition.[.] denotes the Schouten bracket in the exterior algebra of
multivectors on the manifold/ [Sc54], [Tu74].

We will denote byF = F(M) the algebra of smooth functions on the manifaid
A Lie algebra structure.[.] on F will be said to be local if the linear operatd@; on F
defined by

Dy(g) =1[f. 8l Vg eF Q)
is local for all f € F. It is an important result that Jacobi manifolds are distinguished by
the following fact [Sh74], [Ki76], [Gu84].

Theorem 1. Any local Lie algebra structure,[.] on the algebra? of smooth functions of
a manifold M is associated with a pair of tensafs X satisfying the conditions (i) and (i)
in definition 1, and such that the bracket of two functigfig has the form

[f.gl ={f g}a+ fLxg —8Lxf 2
where{ f, g}» denotes the bracket defined by the bivectogiven by

and Ly f denotes the Lie derivative of along the vector fieldX.
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The same result holds true for local Nambu structures [Mr96] replagingy an
N-multivector andX by a (N — 1) multivector satisfying similar compatibility conditions to
() and (i) in definition 1. It is worth pointing out thatF, [., .], -) is not a Poisson algebra
since

[f. ghl = glf- h]1 +1f. glh + gh(Lx [) ®)

i.e. the bracket.[.] is not a derivation on each factor because of the last term in the right-
hand side of (3). However, the bracket.] is not far from being a derivation because

it defines a differential operator of order one. Let us recall that a differential operator
of order r on an associative commutative algebais defined recursively as a linear
map D on A such thats(x)D is a differential operator of order — 1 for all x € A,
where p(x)D](y) = D(xy) — xD(y). Differential operators of order zero are defined as
multiplication by elements on the algebra. It is not hard to see that a linear opérator
on A is a differential operator of order iff §(x)"*'D = 0 for all x € A. In this sense

the linear operatoD, on F defined by (1) is a differential operator of order one for all
f € F. Infact, a simple computation using (3) shows thé$)?D; = 0 for all g € F.

The skew-symmetry of the bracket ]| guarantees that it is also a differential operator on
the first argument too. Then we will say that the brackeif] [defines a skew-symmetric
bidifferential operator on the associative commutative algebraConsequently we will
define abstractly algebras of smooth functions on Jacobi manifolds as follows [Gr92].

Definition 2. A Jacobi algebra is an associative commutative algdowath unit equipped
with a skew-symmetric bidifferential operatét which defines a Lie algebra structure on
A.

It can be shown that ii contains no non-trivial nilpotent elements then the differential
operator P is of order <1 and then we have the following alternative formulation of
theorem 1 [Gr92].

Theorem 2. Let A be an associative commutative algebra with unit containing no non-zero
nilpotent elements, then a skew-symmetric differential operAtdefines a Jacobi structure
on A iff there exists a bivectoA and a vector fieldX verifying (i) and (ii) in definition 1,
such thatP(f, g) = [f, g] where [, .] is the bracket defined by (2).

Even if Jacobi algebras are not Poisson algebras in general, we can define Hamiltonian
vector fields as follows:

Proposition 1. The mapy : (M) — X(M) defined by
feuH =Xy =A0dNH+ fX VfeFM)
is a Lie algebra homomorphism, i.e.,
[Xf" Xg] = X[f,q]-

The vector fieldsX; will be called Hamiltonian vector fields and will be called the
Hamiltonian of X .

We shall denote byFy the subalgebra of functions invariant undéri.e. Fx = {f <
F|Lx f = 0} whose elements will be called basic functions @n If the vector fieldX
is fibrating, i.e. the space of integral curv&sdefines a regular foliation o#/ such that
the canonical projectiom : M — N is a submersion, it is obvious th&y = 7*(F(N))



2786 A lbort et al

where F(N) denotes the algebra of smooth functions on the manifoldu84]. The triple
(M, A, X) has been called a regular Jacobi manifold androjects onto a Poisson bivector
Ay on N [Ch96].

2.2. Derivations of the Lie algebra structure

A vector fieldY on M is a derivation of the Lie algebra structure ghdefined by a Jacobi
structure(A, X) if by definition,

Lylf. gl =Ly f gl +1[f Lyrgl Vf.geF. (4)

Notice that in additionY is a derivation of the associative structure Bf This is the
geometrical translation of the notion of a derivation of a Jacobi algebra. Such derivations
can be called Jacobi derivations. It is an immediate computation to checKk tised Jacobi
derivation. Then, it follows:

Proposition 2. The subalgebreFy is a Lie subalgebra of 7(M), [., .]).

If Y is a derivation of the Lie algebra,[], by using f = constant in the previous
formula (4) we get

Ly[f. gl =1f Lrg]
but using the definition (2),/ g] = fLxg, then
Ly(Lxg) =Lx(Lyg) VgeF
then
[X,Y]=0.
By using now, f, g € Fx, we find
LyA =0.

Thus we have proved thtis an infinitesimal automorphism of the Jacobi struciute X).
In fact, the converse is also true as can be checked directly and we get,

Proposition 3. The vector fieldY is a derivation for [ .] iff Ly X =0 andLyA = 0.
Hence, propositions 2 and 3 imply the following.
Corollary 1. The Lie algebra structure,[.] induces a Poisson structure ¢ty .

Thus, the formal quotient manifold whose algebra of functionsFis is a Poisson
manifold. If X is fibrating then the quotient spacé is actually a Poisson manifold as
was indicated earlier. In this sense we can say that Jacobi manifolds are extensions of
Poisson manifolds. These remarks provide a third way of characterizing Jacobi algebras. It
is obvious that the constant functions &h form an Abelian subalgebra of. Moreover,
it is clear that the centralizer of the Abelian subalgebra of constant functighig.i§hus a
Jacobi algebra can be characterized as a unital algelskech that the operatdf = Dy, is
a derivation and the centralizer of the Abelian subalgebra defined by multiples of the unit
element } is a Poisson algebra and it coincides with the invariant subalgebka of
Hamiltonian vector fields are not Jacobi derivations in general, however we have,
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Proposition 4. A Hamiltonian vector fieldX, is an (inner) derivation iffCxkh = 0, i.e.
h e Fyx.

Definition 3. A function C on M will be said to be a Casimir function ifd, f] = 0 for
all feF.

Notice that [C, f] =0, Vf, implies that
LxC=0
because by definition, equation (2),
[C, f1=AC,df)+CLx f — fLxC

hence usingf = constant, we obtain the above conclusion. Besides the arbitrariness of
implies that

A(C,.)=0
and then for any Hamiltonian vector field
Lx,C=0.
The converse follows the same argument, then we have,

Proposition 5. A function C is a Casimir iff Cx,C =0 for all f € F.

2.3. Particular cases

Let (M, A, X) be a Jacobi manifold. We will describe several particular cases fand
X that lead to some well known geometrical structures.

() X =0. Then(M, A) becomes a Poisson manifold. Afis non-degenerate we obtain
a symplectic manifold with symplectic structuage the inverse of the tensok. The Lie
bracket [, .] becomes the ordinary Poisson bracket defined by the symplecticdorm

(I X =0. Let (M, 2, n) be a co-symplectic manifold, sa? is a closed 2-form and
n is a closed 1-form oM such thatQ" A n # 0, with dimM = 2n + 1. There exists a
Reeb vector field defined by the equations2 = 0, izn = 1, but M carries a Poisson
structure (see [Ca92], [Le93], [Ch96]). We can define a m@p) = ix Q2 + (ixn)n from
vector fields to 1-forms. Then we can define a Poisson tensas

A, B) = Q0 @), b7(B)) (5)
for all covectorsw, 8 on M.

A Jacobi manifold of constant rank is defined by the conditiok A A¥ # 0 and
A**1 = 0. Jacobi manifolds of maximal rank are such thatA” # 0 with dimM = 2n+1,
then there exists a 1-form such thatiyA = X and# is a contact 1-form. Conversely we
have,

(1) X # 0. Let M be a contact manifold with contact forén i.e.6 A d6" # 0. Then
let X be the Reeb field ofM, 6), ix6 = 1,ix dd = 0. Letb be the map defined similarly to
the case of co-symplectic manifolds, thishigX) = ix d9 + (ix0)6. ThenA is defined as in
(5) replacing2 by &, but now(A, X) define a Jacobi structure. The bracket][becomes
the Lagrange bracket for contact structures [Lb58] (see the example A in section 2.4).

The Jacobi structure defined on any contact manifold can also be constructed in some
situations as follows. If the quotient spade of M by the Reeb field is a manifold, it
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inherits a symplectic structure andé defines a connection on the fibratiogh — N. We
lift horizontally the inverse of the symplectic structure shby using the connection,
obtaining A in this way.

(IV) A = 0. In this case we get a Witt algebra. For instanceMn= S*, we find a
Virasoro algebra as a central extension of it [Gr96].

2.4. Some examples

2.4.1. The Jacobi structure orf 8U(2). We will consider first the manifoldU (2). We
realize SU (2) in terms of matriceg of the form

([ B
satisfying|e|?+|8|> = 1. We define the left invariant vector fieldg, X%, X% to be given
by the equations,

lXﬁ@)L = iO’a

whereo, o5, 03 are Pauli matrices ané; the left-invariant Maurer—Cartan forgr? dg.
We set

A =XEAXE X = Xk (6)

Clearly X defines the Hopf fibratiomr : S — $2 and Fx = 7*(F(5?)). It is trivial to
check that

[A,A]=2X A A [X,A]=0
using the commutation properties of the vector fi#H given by
(XL, X[] = €ane XE.

Then the previous tensors, X define a Jacobi structure on the manifad which is
the Jacobi structure defined by the contact structure definesf doy the contact 1-form
0 =—3iTr(o30,).

It is simple to show that the previous Jacobi structure, when restrict§d, tgives the
standard Poisson structure 8f Indeed,A is invariant under left translations on the group
SU(2).

BecauseX = X% is a generator of the right action, the left action projects onto an
action onS2. The Poisson bracket induced fy is invariant under this action. O$f all
SO (3) invariant bivector fields are multiple of each other.

Now we consider the cotangent group$df (2) without the zero section. We will denote
it by T3 SU(2). We will identify it with the productSU (2) x R3, whereR3 = R3 — {0}, by
using left translations again. Then

TESU(2) = SU(2) x RS 7

We will consider the constant rank Poisson structurék@robtained from the identification
Rg = 52 x R*. We will denote this Poisson tensor by, and it coincides again with the
canonical linear Poisson structure on the dual of the Lie algebsd/g®). Then we define
the following objects,

ad
A=A1+8—AX1—efA2 X=X (8)
r

where A1, X; denotes the Jacobi structure W/ (2) defined above, (6), and denotes
the radial coordinate ifiR3. We must point out that the Jacobi structure thus defined is a
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non-trivial superposition of a contact and a Poisson structure. In fact this Jacobi manifold is
non-transitive, i.ef(T*M)+ (X) does not spaff M. It is well known that Jacobi structures
obtained from contact and/or co-symplectic manifolds must be transitive. Thus, the Jacobi
structure defined above does not fall into any of the previous geometric categories.

2.4.2. Locally conformal symplectic manifoldsAnother interesting example of Jacobi
manifolds is provided by the class of locally conformal symplectic manifolds. Such
manifolds are characterized by a non-degenerate 2-fbrand a closed 1-fornw, called

the Lee form of the structure, verifying (see [Co86] and references therein),

do =w A . 9)

We can define a mapsending vectors into 1-forms by contraction wibh Then the tensors
A =dobtandX =b~1(w) define a Jacobi structure.

There are abundant examples of genuine locally conformal symplectic manifolds. We
will simply quote the following [Co86]. LetH (r,1) denote the Heisenberg group of
dimension 2 + 1. We will denote its coordinates by, p;, i = 1,...,r, ands. We
will now consider the extensioH (r, 1) x R with the extra coordinate denoted by Then
we define on this manifold the 2-form,

® =dg’ Adp; + (ds — p; dg') A dr.

It is now obvious that @ = dr A ® and ® defines a locally conformal symplectic structure
with Lee form d. The Jacobi structure defined by the locally conformal symplectic structure
(®, dr) is given by the tensors:

0 ad ad ad ad d d
=—A + —A—=—pi— A — X=_—.
dq' dp; 0t Os ap; 0s as
We will not address here the mechanical interpretation of this structure but we will consider
the quotient of this manifold (diffeomorphic tB¥*2? by the natural right action of the
subgroupl'(r, 1) x Z of H(r,1) x R) given by those elements with integer coordinates.
It is a simple computation to show thdt, dr are invariant with respect to the action
of the discrete subgroup(r, 1) x Z, hence it passes to the quotient space) x S* =
(H(r,1) x R)/(I'(r, 1) x Z) inducing on this compact nilmanifold a locally conformal
structure with very peculiar characteristics. For instance it is known X@aj x S* can
have no Kahler structures, and if > 2 then it cannot have symplectic structures either
[Co86].
Other examples of locally conformal symplectic manifolds obtained by quotienting
nilpotent or solvable groups with remarkable properties are discussed for instance in [Fe88],
[An88].

A

(10)

3. Generalized reduction of Jacobi manifolds

3.1. Reduction of commutative associative algebras

The generalized reduction process can be described better in the algebraic setting of
commutative associative algebras. This way of thinking exploits the duality among
topological spaces and the correspondings algebras of functions defined on them.

The idea is to obtain a reduced algebra out of a givenAwembining two elementary
processes:
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—First, ‘choosing a submanifold’, by definition this consists in choosing a quoHent
of the algebraA. The projection mapr : A — B defines an ideal as kerr = I and
A/I = B. Thus, ‘choosing a submanifold’ is equivalent to fixing an idealf A.

—The second process, ‘quotienting out an equivalence relation’, by definition consists
in choosing a subalgebrd; of A/I. We will call the algebrad; a reduction of the algebra
A.

Notice that there are two choices involved in the definition of the reduced algebra
A;, the choice ofl and of the subalgebrd; itself. This can be made more explicit as
follows. The inverse image of the subalgebta defines a subalgebra’ = 7—%(A;) of
A. Thus, the order in which the two processes are performed can be reversed realizing that
A; = A’//JA’Nn 1. Then we can first select a subalgebtaof A and then an ideal’ of
A’ and defined; = A’/I’. The relation between the idedland I’ is that! is the ideal
generated by’, i.e. I = AI'. We see in this way the equivalence between the two ways of
constructing the reduced algebta and the dependence af; in the choice of a subalgebra
A

It is obvious that the reduction process can be repeated a number of times using, each
time, an ideall, of the reduced algebra,, , and a subalgebra;, of the quotient algebra
A /L,,a=1,...,n, with A;, = A;. Itis obvious from the previous remark that we can
reorganize the ideals, and the subalgebras,, to obtain a unique ideal such thatd4,, is
a subalgebra ofi/J. Thus the reduction process can always be restricted to the two steps
described above.

The previous ideas can be refined if we suppose that the algébcarries some
additional structure. For instance we can suppose thatrries a Lie algebra structure
[.,.] (not necessarily compatible with the associative product). Then if we are given an
ideal I as before (with respect to the associative structure), we would like to choose the
subalgebrad; of A/I such that it will inherit a Lie algebra structure, reproducing in this
way the structures in the original algeba Let us assume that’ is simultaneously a Lie
subalgebra ofA, [., .]) and a subalgebra d@f4, -). Now we will suppose that, NI is an
ideal with respect to the associative structure and an invariant Lie subalgeltatbén it
is obvious that the quotient algebrgy = A’/A’' N I is a subalgebra ofA/I and carries a
Lie algebra structure. Thus the reduced algebraan also be called a reduced Lie algebra
for A.

From the above considerations it is obvious that the conditions imposed on the
subalgebrad’ are very tight. This shows that the enormous freedom we have to construct
reduced algebras is only apparent. We will show in the coming section how to find adequate
subalgebrast’ for Jacobi algebras.

Before that we will briefly analyse the reduction of dynamics. By definition, dynamical
systems on algebras are derivations of the algebra. Thus it is obvious tliatisfa
derivation of an associative commutative algeArand we want to reduce both the algebra
and the dynamics, the subalgebtaand the ideall must be invariant with respect tb,

i.e. D(I) Cc I, D(A’) C A’. In this case it is obvious thaP induces a derivatiorD; on
the reduced algebra; that will be called the reduced dynamic induced Byon A;.

3.2. Reduction of Jacobi manifolds

We will apply the ideas in the previous section to the algebra of smooth functions on a
Jacobi manifoldM. Thus, the above algebr& will now be . We will choose an ideal of

the associative commutative algelsFathat will be denoted now ag, i.e. 77 C J and

we shall assume thaty 7 c 7, i.e. J is X-invariant.
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With the ideal 7 we can associate as before the short exact sequence of associative
commutative algebras

O-J—->F—->F/J—0.

The ideal 7 allows us to choose directly the subalgebta used to complete the
reduction process. This subalgebra is the normalizes afith respect to the Lie algebra
structure [, .] on F which is defined as

Ny ={feFIf T CT} (11)

The following propositions are devoted to show th4t verifies all the properties required

in the reduction process. We must remark about the crucial role played by the invariance
of J with respect toX in the proof of some of them. In particular this means that the
reduction process as discussed here will not work for an arbitrary Lie algebra structure on
an associative commutative algebra.

Proposition 6. N7 is a Lie subalgebra ofF, [., .]).

Proof. Is an immediate consequence of the Jacobi identity.fo}, pecause forf, g € NV,

[[f gl J1=1g Il f1+ T, f1. &l 12)

the term inside the first bracket on the right-hand side of the previous equation (12), is in
J becauses € N;. Then becaus¢ € N; we obtain that the first term is iff. The same
argument applies to the second term in the right-hand side of (12). O

Proposition 7. The subalgebraV; is X-invariant, i.e.LxN; C Ny.
Proof. Let f be a function inV; and % a function in7. BecauseX is a derivation of
[.,.], we have,

Lx[f ]l =[Lx f. k] + [f, Lxh].
Then,

[Lx foh] = Lx[f, h] = [f, Lxh]
is in J because f, h] and Lxh are in 7. ]
Proposition 8. The subspacéV; is a subalgebra ofF with respect to the associative
commutative structure
Proof. Letk be a function on7 and f1, f> two arbitrary functions ooV;. Then,

[f1f2. h] = fal f2. Bl + fol f1. h] = fif2Lxh.
The two first terms on the right-hand side of the previous equation belogg because
fi are inN7, and the last term is also containedjhbecause7 is X-invariant and is an
ideal, hencefy f> is in M. O
Proposition 9. N; N J is an invariant Lie subalgebra of 7, i.e.

NsNT, N7l NN T.
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Proof. Let f beinN;NJ andg in N;. Then f is in /7 and then proposition 6 implies
that [f, g] € N7, but [f, g] is also in 7 because of the definition of the normaliz&f;
(11). Then, [f, gl e Ny N J.

Now if hy, hy are inN; N 7, then |y, ko] is in Ny becauser,, h, are in N7 and
proposition 6. On the other han, € 7, but h; € N, then |1, hy] € J. Hence
[hl,hg]GNjﬂj. O

Proposition 10. The subspac&/; N 7 is an ideal of the associative commutative algebra
Ny

Proof. Let f be inAN;NJ andg € N;. Then, f € J andgf € J because7 is an
ideal. Moreover, proposition 8 implies thaf; is a subalgebra af with respect to, then
gf € N7 and the conclusion follows. O

Thus we can state the following theorem.

Theorem 3. Let (M, A, X) be a Jacobi manifold andZ an ideal of the associative
commutative algebra of smooth functio@son M. Let us suppose thaf is X-invariant.

Then, the quotient spac¥;/N; N J inherits a Jacobi algebra structure induced from that

of F. Moreover, if there is a smooth manifol such thatF(R) = N;/Ns;N J, thenR
inherits the structure of a Jacobi manifold, the bracket among functions given by the bracket
of the Lie algebra structure induced M; /N7 N 7.

The algebraF; = N7/N;NJ will be called the reduced algebra of the Jacobi algebra
F with respect to the ideal/ and the Lie bracket on it will be denoted by ;. If the
associative commutative structure &y = N7/N; N J defines a smooth manifol&, the
reduced structure defined on this quotient manifldvill be called the reduction of the
Jacobi manifoldM .

Proof. We see that because of proposition 9, the Lie algebra (propositio;6admits
N7NJ as an invariant Lie subalgebra, therefdfe /N ; N J is a Lie algebra. Moreover,
because of proposition 10/7 N7 is an ideal of\/; with respect to its associative structure
(proposition 8) and the quotief; /N ;N7 is an associative commutative algebra. Finally
the derivationX passes to the quotient because of proposition 7. Thus we have on the
reduced algebrd/; /N ;N J an associative and a Lie algebra structure. It remains to show
that they define a Jacobi algebra. This follows from the following lemma.

Lemma 1. Let D be a differential operator of order on the associative commutative
algebraA. If I is an ideal such thab(l) C I then, the linear operatab induced byD
on the quotientd /I is again a differential operator of ordet r.
Proof. The operatoD(x + I) = D(x) + I defined onA/I verifies that

8(x)D =8(x)D
forall x e x =x+ 1. Then,

(X)) ™D =8(x)*1D =0
because (x)" 1D = 0 (D is of orderr). O
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Then we conclude the proof of the main theorem, noting that the opebgtgiven by
(1), leaves invariantV; for all f € N (proposition 6), therD; is a differential operator
of order 1 inN; for all f € N;. Moreover, J is invariant for eachD;, f € Nj.
Thus the operatoD; induces a differential operatdd, of order 1 in the quotient algebra
N7/Nzn J. By definition of the Lie bracket in the reduced algebra, we have,

Ds() =11, 28l

Thus the Lie bracket[.] s defines a skew-bidifferential operator of order 1, hence a Jacobi
structure. Finally, if the reduced algebra is the algebra of functions of a smooth manifold
R, theorem 2 implies thak is a Jacobi manifold. |

Remark. It is important to remark that there is not a simple criterion to recognize if the
reduced algebré&; is the algebra of functions of a smooth manifold. An alternative road
could be taken considering the reduction of topological algebras (for insthedgebras).

In such a case it is clear that with the obvious modifications the previous theorem still
works. Nevertherless, we must realize that this does not help us to obtain a geometrical
interpretation of Jacobi manifolds because the smooth structure will be obtained by selecting
a subalgebra on the algebra of functions which is not provided by the theorem. In some
particular situations, however, it is possible to prove that there exists a reduced manifold.
Essentially all these situations use a slicing theorem for group actions (see for instance
section 4.2).

3.3. Reduction by a submanifold

The canonical way of defining ideals in spaces of functions is by fixing subspaces. Let
¥ be an embedded closed submanifolddéfand we denote by/s the ideal of smooth
functions vanishing o2, Js = {f € F|f|s =0}. ThenF(X) = F(M)/Ts.

Itis clear thatJy is X-invariant iff X is invariant under the flow oK or equivalently,
if X|s € TX. The normalizetNy of Jx consists of functionsf such that the operator
D, leavesJs invariant. It is simple to check that this is equivalent to asking whether the
Hamiltonian vector fieldX; is tangential tox. Recall that because of propositionX also
induces a derivation of the normalizafs.

Some terminology is convenient now. Functions ji& will be called constraint
functions and functions ioVy will be called first-class functions. Functions iy N Js
will be called first-class constraints and constraints which are nafgm Jx will be called
second-class constraints. First-class constraints define Hamiltonian vector fields which are
tangential toX but because of proposition 1 and proposition 9 we have that the distribution
Ds generated by Hamiltonian vector fields corresponding to first-class constraints is an
integrable distribution. It defines a foliation & whose restriction to the submanifokd
will be denoted byLy.

In general the reduced Jacobi algebra will not be the algebra of smooth functions on
the quotient spac& /Ly unless some further conditions are imposed3anFor instance
if ¥ is such that7y c Ny, we will say thatX is first class or co-isotropic. Then K is
X-invariant, the reduced Jacobi algebraNis /Js. It is not hard to see that in this case
F(Z/Ls) = Nz /Jx and the space of leaves of the foliati@s inherits a Jacobi structure.
To conclude we can state that if the foliation is regular ahds co-isotropic, then the
reduced Jacobi algebra is the algebra of functions of the quotient manifolg: .

Simple cases of co-isotropic submanifolds of Jacobi manifolds are provided by the
following examples.
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Let S be a regular level set of the Casimir functions @n Then it is clear that7s is
the ideal generated by the subalgebra of Casimir8/onThen, Ny = F because f, C] =0
for all f € F, andC an arbitrary Casimir. Hencels C N5 = F and the submanifold is
co-isotropic. In this particular case, the reduced algebta/igs = F(S) and the reduced
manifold is S itself with the natural Jacobi structure induced on it dyand X.

Another example is provided by submanifolfisuch that7s + Ns = F, then because
Ns/Ns N Ts = Ns + Js/Ts, then, the reduced algebra will again B¢ 75 = F(S) and
the reduced manifold will be the submanifafdagain that will inherit a Jacobi structure.
In particular we will obtain as corollaries of this situation most of the results in [Da91], for
instance:

Theorem 4. Let S be a submanifold of the Jacobi manifald such that it isX-invariant
and satisfies,

TS+ AY(TS% =TM

where T, S° = {« € T*M|a(v) = 0, Vv € T,S} denotes the polar distribution t6S and
A* is the bundle mag*M — T M defined by contraction with\. Then S inherits in a
natural way the structure of a Jacobi manifold.

3.4. Reduction by a distribution

It is natural to select as a subalgebra in the reduction process not just the normalizer of an
ideal 7 but a subalgebra of it selected by imposing some invariance requirement. This is
formulated using integrable distributions @7 i.e. Lie subalgebra® of the Lie algebra of
derivations of the algebr&. Any distribution defines an associative subalgebra of invariant
functions,Fp = {f € F1Z(f) = 0,VZ € D}. We will say that the integrable distribution
D is compatible with the Jacobi algebra structurefoff Fp is an X-invariant subalgebra
with respect to both structures, associative and Lie algebrg;.on

It is now obvious that if7 is an ideal onF, the quotient algebra

Frsp=Fp ﬂNj/]:D ﬂNjﬂj

is a Jacobi algebra, that will be called the reduced Jacobi algehfawith respect to7
andD. The results are evident from the previous discussion in thgt i 0, then the
reduced Jacobi algebra is juBp which amounts to performing only step 2, ‘quotienting by

an equivalence relation’, in the reduction process. One particular instance of this situation
arises when we have a submersion: M — N. Then the tangent spaces to the level
sets ofr define a distributiorD and the algebréFy is precisely the algebra generated by
functions of the formf oz, f € F(N). We will see two examples of this situation in the
next section.

4. Examples and applications

4.1. Reduction of the Jacobi manifold§SU(2) and 3(Q, R) x R

Let us consider the Jacobi structure defined in section 2.4. Then there are two natural
projections,r : T3 SU(2) — SU(2) given by the natural projection on the first factor in the
decomposition given by (7), andl: T; SU (2) — ]Rg given by the projection onto the second
factor. Each one of the maps, J defines distributions offif SU(2) given by the vector

fields tangent to the corresponding level sets. It is clear that the subalgebras of invariant
functions are generated by the components of the mapad J themselves, and because
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of (8) it is clear that they ar&(-invariant Lie subalgebras of the full algebf& 7 SU (2))
of functions. Thus the contact structure 8&V(2) and the Lie—Poisson structure en(2)
are obtained by generalized reduction of the Jacobi structufg 8t/ (2).

We can also consider the locally conformal symplectic structure defined in section 3.4.2.
The Jacobi structuréA, X) on R?+2 is a particular example of the following situation. Let
0 be a smooth manifold and(Q,R) x R = T*Q x R x R with local coordinates
q', pi, s, t. This manifold posseses a canonical Jacobi structure with tensors given locally
by (10). Again we have two natural projections: J1(Q,R) x R — JXQ,R) and
o JYO,R) x R - T*Q x R. The spaced*(Q,R) andT*Q x R have respectively a
contact and a co-symplectic structure. It is a simple check to show that they are precisely
the reduction of the Jacobi structure in the total space by the corresponding projections. In
this sense we can think of the Jacobi structurgQ, R) x R as a non-trivial mixing of
contact and co-symplectic structures.

We will consider as a further example the reductionffr, 1) x R with the Jacobi
structure given by (10) with respect to some submanifolds. For instance, consider the
submanifold defined by the equatigh = 0 and the ideal7 defining the submanifold is
the ideal generated hy. We can easily compute the Jacobi brackets among the generators
q', pi, s, t of the algebra of functions oi (r, 1) x R using (2),

l¢'.q'1=0 lg". pjl=4¢; [¢',s] =¢' [¢'. 1] =0

[pi.pj] =0 [pi,s] =0 [pi.1] =0 [s,1]=1—1
Then the normalizeW; of J is generated by, p1.....q", ¢'*, pis1.....q", pr.s.t.
The submanifold is co-isotropic and the reduced algebra is generategf by, ...,
g pic1, ¢ piva, ... q", pry s, t, i€ it is the algebra of functions dff (r — 1, 1) x R
with its Jacobi structure.

Let us now consider the submanifald= 0. Then the normalizer of the ideal generated
by ¢ is generated by, p;, t and the submanifold is co-isotropic. The reduced algebra is

generated by, p;. Thus it coincides withR? and the induced Jacobi structure is the
canonical symplectic structure on it.

4.2. Reduction of Jacobi manifolds with symmetry

Let G be a Lie group ang its Lie algebra.

Definition 4. A Lie algebra homomorphisrg — X(M), a — &,, defines an infinitesimal
action of G on the Jacobi manifold/ by automorphisms i, is a derivation for the Lie
bracket onF. The action ofg on M will be called Hamiltonian if§, is Hamiltonian for all

aeg.

Notice that the infinitesimal action gf on M is Jacobian iffC;, A = 0, [§,, X] = 0,
for all a € g. We also notice that an action by infinitesimal automorphisms is Hamiltonian
if the Hamiltoniansf, associated with the elements gfire inFx. Such an action will be
called Jacobian.

We will consider in what follows a Jacobian action of a Lie group on a Jacobi manifold
M. Denoting as before the Hamiltonian defined by the elementy by f, we have,

§a = X,
Hence we define a momentum map M — g* by setting
(m,a) = fa Va eg (13)
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or equivalently,
£ = (u.a)X + Ad(pn.a))  Vaeg. (14)

If 0 is a weakly regular value for the momentum map then* = p~%(0) is a
submanifold ofM. Consider the ideal/s of functions vanishing ork. It is obvious that
Js is the ideal onF generated by the functiong,, a € g and consequently it will be
denoted by7.

We will denote byA; the normalizer of7,. It is not hard to check thak is first class,
i.e. Jo C No. Moreover,\j is the algebra of functions such that their restrictionsto
are G-invariant, i.e. if D denotes the integrable distribution generatedshya € g, then
No C Fp. The reduced algebra will therefore g = Ny/Jp or equivalently the algebra
of functions onX invariant with respect t®.

If the quotient spac@1(0)/G is a smooth manifold, for instance this will be the case
if G is a compact Lie group acting properly ad, then the quotient algebr&, can be
identified with the algebra of functions ab/G. Then, the Jacobi reduction theorem allows
us to conclude that the quotient manifdity G inherits the structure of a Jacobi manifold.

4.3. Reduction of symplectic, Poisson, contact and co-symplectic structures

4.3.1. Reduction of symplectic manifoldsY = 0, A non-degenerate. The previous
procedure agrees with symplectic reduction as discussed for instance in [Ma85], [Gr94].
In fact, specializing the discussion in section 4.2 to symplectic manifolds with symmetry
we will obtain the well known Marsden—Weinstein symplectic reduction theorem. Notice
that an action of a groul is Jacobian ifi;,w = df,, wherew is the symplectic form
defined byA. Thus the momentum map defined by (13) and (14) coincides with the
symplectic momentum map. Then finally the reduced algéfreocincides with the algebra

of functions of . ~1(0)/G (provided that it actually defines a smooth manifold).

4.3.2. Reduction of Poisson manifoldsX = 0, A arbitrary. The previous discussion leads
us to the construction of reduced Poisson manifolds as discussed for instance in [Gr94].

If we are given a submanifol® of a Poisson manifold/ and a subbundl& of TM,
we can define the annihilatd? of E restricted tox, then we consider the distributidh
generated by Hamiltonian vector fields such that the differentials of their Hamiltonians lie
on E2. If E verifies the conditions stated in [Ma86], then the distributiiis compatible
with the Poisson structure and the reduced Poisson agrees with the Marsden—Ratiu reduction
of M by ¥ and E.

4.3.3. Reduction of co-symplectic manifoldst = 0. Particularizing the results above
to co-symplectic manifolds we will obtain the reduction of co-symplectic manifolds with
symmetry [AI89]. The reduction of co-symplectic manifolds for singular momentum maps
discussed in [Le93] can be described in this setting with the obvious modifications.

4.3.4. Reduction of contact manifoldsX # 0. Similarly, reduction of contact manifolds
with symmetry (see for instance [Al89], [Le96]) is included in our previous discussion.

Note added in proofit was called to our attention that two previous papers have dealt with reduction of Jacobi
manifolds, however from a geometric perspective: Margarida J and Nunes da Costa M&f89iéh des vagits

de JacobiC. R. Acad. Sci., Pari$ 308 101-3; and Mikami K 1989 Reduction of local Lie algebR®c. Am.
Math. Soc.105686. A forthcoming work will discuss the relationship between them and this paper.
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