
Reduction of Jacobi manifolds

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1997 J. Phys. A: Math. Gen. 30 2783

(http://iopscience.iop.org/0305-4470/30/8/022)

Download details:

IP Address: 171.66.16.112

The article was downloaded on 02/06/2010 at 06:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/30/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen.30 (1997) 2783–2798. Printed in the UK PII: S0305-4470(97)74554-2

Reduction of Jacobi manifolds

A Ibort†, M de Léon‡ and G Marmo§
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Abstract. A reduction procedure for Jacobi manifolds is described in the algebraic setting
of Jacobi algebras. As applications, reduction by arbitrary submanifolds, distributions and
the reduction of Jacobi manifolds with symmetry are discussed. This generalized reduction
procedure extends the well known reduction procedures for symplectic, Poisson, contact and
co-symplectic structures.

1. Introduction

Jacobi manifolds were introduced by A Lichnerowicz as a rich geometrical notion extending
several important geometrical structures, including among others, symplectic, Poisson,
contact and co-symplectic [Li78]. However, it is true that conceptually Jacobi manifolds
arise from the notion of local Lie algebras, i.e. Lie algebras on spaces of smooth sections
of vector bundles with a locality property [Sh74], [Ki76], [Gu84].

In this paper we analyse a geometrical reduction procedure for Jacobi manifolds. It
is well known that reduction is a natural geometrical process in the categories of Poisson,
symplectic, contact and co-symplectic manifolds [Ma86], [Ma74], [Al89] and also in the
category of Poisson supermanifolds [Ca90]. It is thus natural to ask if there is a natural
mechanism for the reduction of Jacobi manifolds. It so happens that the adequate way to
address such a generalization is using an algebraic formulation as proposed in [Gr94] or
[Ki93] for Poisson manifolds and in [Ma96] for Nambu manifolds. The algebraic approach
benefits from the natural duality between algebras of functions and sets. We will use such
an approach here and show that there is a natural generalization of this algebraic reduction
procedure to the category of Jacobi manifolds and Jacobi algebras [Gr92].

This mechanism allows us to construct new Jacobi manifolds out of simple ones very
much like symplectic reduction offers a simple way to construct complicated (from the
topological point of view) symplectic manifolds from ‘simple’ symplectic manifolds. As a
byproduct of these ideas we will be able to offer another interpretation of several theorems
concerning the existence of Jacobi structures on certain submanifolds and projections of
Jacobi manifolds [Ju84], [Da91].

There is a striking similarity between Jacobi manifolds and certain algebraic structures
that have arisen recently in quantum field theories called BV-algebras and some of their
generalizations [Wi90], [Ge94], [Sc95]. In a sense that will be discussed in forthcoming
papers, the Jacobi algebras are one instance of a classical limit of a generalized notion of
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BV-algebras. This remark raises the problem of quantizing Jacobi manifolds as a question
of physical interest.

It is worth pointing out that the algebraic approach to the reduction of geometric
structures focuses the attention on the way to reproduce the initial geometrical structures
on algebras constructed from the initial one using simple algebraic constructions such as
quotienting out by ideals and restricting to suitable subalgebras. These constitute in fact
the two elementary steps in the reduction process. This is very much a reminder of the
procedure of ‘localization’ in algebraic geometry even though the outcome is very different.

The paper is organized as follows. We will review succintly some of the main features
of Jacobi manifolds that will be used in the paper in section 2, in particular we will review
the characterization of Jacobi algebras and the role of derivations of the algebra of smooth
functions. In section 3 we will describe the algebraic reduction procedure for associative
commutative algebras and for associative commutative algebras with a Lie algebra structure
(but not necessarily Poisson algebras). Then we will discuss the reduction of Jacobi algebras,
i.e. algebras of functions of Jacobi manifolds with respect to an ideal, a submanifold and a
distribution, and in section 4 we will compare these results with the well known reduction
procedures in symplectic, Poisson etc, manifolds.

2. Jacobi manifolds and Jacobi algebras

2.1. Geometric and algebraic characterization of Jacobi manifolds

Definition 1. A Jacobi manifold [Li78] is a triple(M,3,X) whereM is a smooth manifold,
3 is a bivector andX is a vector field defined onM, such that they satisfy the relations:

(i) [3,3] = 2X ∧3,
(ii) [X,3] = 0.

In the previous definition [., .] denotes the Schouten bracket in the exterior algebra of
multivectors on the manifoldM [Sc54], [Tu74].

We will denote byF = F(M) the algebra of smooth functions on the manifoldM.
A Lie algebra structure [., .] on F will be said to be local if the linear operatorDf on F
defined by

Df (g) = [f, g] ∀g ∈ F (1)

is local for all f ∈ F . It is an important result that Jacobi manifolds are distinguished by
the following fact [Sh74], [Ki76], [Gu84].

Theorem 1. Any local Lie algebra structure [., .] on the algebraF of smooth functions of
a manifoldM is associated with a pair of tensors3, X satisfying the conditions (i) and (ii)
in definition 1, and such that the bracket of two functionsf, g has the form

[f, g] = {f, g}3 + fLXg − gLXf (2)

where{f, g}3 denotes the bracket defined by the bivector3 given by

{f, g}3 = 3(df, dg)

andLXf denotes the Lie derivative off along the vector fieldX.
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The same result holds true for local Nambu structures [Mr96] replacing3 by an
N -multivector andX by a(N−1) multivector satisfying similar compatibility conditions to
(i) and (ii) in definition 1. It is worth pointing out that(F , [., .], ·) is not a Poisson algebra
since

[f, gh] = g[f, h] + [f, g]h+ gh(LXf ) (3)

i.e. the bracket [., .] is not a derivation on each factor because of the last term in the right-
hand side of (3). However, the bracket [., .] is not far from being a derivation because
it defines a differential operator of order one. Let us recall that a differential operator
of order r on an associative commutative algebraA is defined recursively as a linear
map D on A such thatδ(x)D is a differential operator of orderr − 1 for all x ∈ A,
where [δ(x)D](y) = D(xy) − xD(y). Differential operators of order zero are defined as
multiplication by elements on the algebra. It is not hard to see that a linear operatorD

on A is a differential operator of orderr iff δ(x)r+1D = 0 for all x ∈ A. In this sense
the linear operatorDf on F defined by (1) is a differential operator of order one for all
f ∈ F . In fact, a simple computation using (3) shows thatδ(g)2Df = 0 for all g ∈ F .
The skew-symmetry of the bracket [., .] guarantees that it is also a differential operator on
the first argument too. Then we will say that the bracket [., .] defines a skew-symmetric
bidifferential operator on the associative commutative algebraF . Consequently we will
define abstractly algebras of smooth functions on Jacobi manifolds as follows [Gr92].

Definition 2. A Jacobi algebra is an associative commutative algebraA with unit equipped
with a skew-symmetric bidifferential operatorP which defines a Lie algebra structure on
A.

It can be shown that ifA contains no non-trivial nilpotent elements then the differential
operatorP is of order61 and then we have the following alternative formulation of
theorem 1 [Gr92].

Theorem 2. Let A be an associative commutative algebra with unit containing no non-zero
nilpotent elements, then a skew-symmetric differential operatorP defines a Jacobi structure
onA iff there exists a bivector3 and a vector fieldX verifying (i) and (ii) in definition 1,
such thatP(f, g) = [f, g] where [., .] is the bracket defined by (2).

Even if Jacobi algebras are not Poisson algebras in general, we can define Hamiltonian
vector fields as follows:

Proposition 1. The map\ : F(M)→ X(M) defined by

f 7→ \(f ) = Xf = 3(df )+ fX ∀f ∈ F(M)
is a Lie algebra homomorphism, i.e.,

[Xf ,Xg] = X[f,g] .

The vector fieldsXf will be called Hamiltonian vector fields andf will be called the
Hamiltonian ofXf .

We shall denote byFX the subalgebra of functions invariant underX, i.e.FX = {f ∈
F |LXf = 0} whose elements will be called basic functions onM. If the vector fieldX
is fibrating, i.e. the space of integral curvesN defines a regular foliation ofM such that
the canonical projectionπ : M → N is a submersion, it is obvious thatFX = π∗(F(N))
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whereF(N) denotes the algebra of smooth functions on the manifoldN [Ju84]. The triple
(M,3,X) has been called a regular Jacobi manifold and3 projects onto a Poisson bivector
3N onN [Ch96].

2.2. Derivations of the Lie algebra structure

A vector fieldY onM is a derivation of the Lie algebra structure onF defined by a Jacobi
structure(3,X) if by definition,

LY [f, g] = [LY f, g] + [f,LY g] ∀f, g ∈ F . (4)

Notice that in additionY is a derivation of the associative structure ofF . This is the
geometrical translation of the notion of a derivation of a Jacobi algebra. Such derivations
can be called Jacobi derivations. It is an immediate computation to check thatX is a Jacobi
derivation. Then, it follows:

Proposition 2. The subalgebraFX is a Lie subalgebra of(F(M), [., .]).

If Y is a derivation of the Lie algebra [., .], by using f = constant in the previous
formula (4) we get

LY [f, g] = [f,LY g]

but using the definition (2), [f, g] = fLXg, then

LY (LXg) = LX(LY g) ∀g ∈ F
then

[X, Y ] = 0.

By using now,f, g ∈ FX, we find

LY3 = 0.

Thus we have proved thatY is an infinitesimal automorphism of the Jacobi structure(3,X).
In fact, the converse is also true as can be checked directly and we get,

Proposition 3. The vector fieldY is a derivation for [., .] iff LYX = 0 andLY3 = 0.

Hence, propositions 2 and 3 imply the following.

Corollary 1. The Lie algebra structure [., .] induces a Poisson structure onFX.

Thus, the formal quotient manifold whose algebra of functions isFX, is a Poisson
manifold. If X is fibrating then the quotient spaceN is actually a Poisson manifold as
was indicated earlier. In this sense we can say that Jacobi manifolds are extensions of
Poisson manifolds. These remarks provide a third way of characterizing Jacobi algebras. It
is obvious that the constant functions onM form an Abelian subalgebra ofF . Moreover,
it is clear that the centralizer of the Abelian subalgebra of constant functions isFX. Thus a
Jacobi algebra can be characterized as a unital algebraA such that the operatorX = D1A is
a derivation and the centralizer of the Abelian subalgebra defined by multiples of the unit
element 1A is a Poisson algebra and it coincides with the invariant subalgebra ofX.

Hamiltonian vector fields are not Jacobi derivations in general, however we have,
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Proposition 4. A Hamiltonian vector fieldXh is an (inner) derivation iffLXh = 0, i.e.
h ∈ FX.

Definition 3. A function C on M will be said to be a Casimir function if [C, f ] = 0 for
all f ∈ F .

Notice that [C, f ] = 0, ∀f , implies that

LXC = 0

because by definition, equation (2),

[C, f ] = 3(dC, df )+ CLXf − fLXC
hence usingf = constant, we obtain the above conclusion. Besides the arbitrariness off

implies that

3(dC, .) = 0

and then for any Hamiltonian vector field

LXf C = 0.

The converse follows the same argument, then we have,

Proposition 5. A function C is a Casimir iffLXf C = 0 for all f ∈ F .

2.3. Particular cases

Let (M,3,X) be a Jacobi manifold. We will describe several particular cases for3 and
X that lead to some well known geometrical structures.

(I) X = 0. Then(M,3) becomes a Poisson manifold. If3 is non-degenerate we obtain
a symplectic manifold with symplectic structureω the inverse of the tensor3. The Lie
bracket [., .] becomes the ordinary Poisson bracket defined by the symplectic formω.

(II) X = 0. Let (M,�, η) be a co-symplectic manifold, say,� is a closed 2-form and
η is a closed 1-form onM such that�n ∧ η 6= 0, with dimM = 2n + 1. There exists a
Reeb vector fieldξ defined by the equationsiξ� = 0, iξ η = 1, butM carries a Poisson
structure (see [Ca92], [Le93], [Ch96]). We can define a map[(X) = iX� + (iXη)η from
vector fields to 1-forms. Then we can define a Poisson tensor3 as

3(α, β) = �([−1(α), [−1(β)) (5)

for all covectorsα, β onM.
A Jacobi manifold of constant rankk is defined by the conditionX ∧ 3k 6= 0 and

3k+1 = 0. Jacobi manifolds of maximal rank are such thatX∧3n 6= 0 with dimM = 2n+1,
then there exists a 1-formθ such thatiθ3 = X andθ is a contact 1-form. Conversely we
have,

(III) X 6= 0. LetM be a contact manifold with contact formθ , i.e. θ ∧ dθn 6= 0. Then
letX be the Reeb field of(M, θ), iXθ = 1, iX dθ = 0. Let [ be the map defined similarly to
the case of co-symplectic manifolds, this is,[(X) = iX dθ+(iXθ)θ . Then3 is defined as in
(5) replacing� by dθ , but now(3,X) define a Jacobi structure. The bracket [., .] becomes
the Lagrange bracket for contact structures [Lb58] (see the example A in section 2.4).

The Jacobi structure defined on any contact manifold can also be constructed in some
situations as follows. If the quotient spaceN of M by the Reeb field is a manifold, it
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inherits a symplectic structureω andθ defines a connection on the fibrationM → N . We
lift horizontally the inverse of the symplectic structure onN by using the connectionθ ,
obtaining3 in this way.

(IV) 3 = 0. In this case we get a Witt algebra. For instance onM = S1, we find a
Virasoro algebra as a central extension of it [Gr96].

2.4. Some examples

2.4.1. The Jacobi structure on T∗0 SU(2). We will consider first the manifoldSU(2). We
realizeSU(2) in terms of matricesg of the form

g =
(
α β

−β̄ ᾱ

)
α, β ∈ C

satisfying|α|2+|β|2 = 1. We define the left invariant vector fieldsXL1 , XL2 , XL3 to be given
by the equations,

iXLa 2L = iσa

whereσ1, σ2, σ3 are Pauli matrices and2L the left-invariant Maurer–Cartan formg−1 dg.
We set

3 = XL1 ∧XL2 X = XL3 . (6)

ClearlyX defines the Hopf fibrationπ : S3 → S2 andFX = π∗(F(S2)). It is trivial to
check that

[3,3] = 2X ∧3 [X,3] = 0

using the commutation properties of the vector fieldXLa given by

[XLa ,X
L
b ] = εabcXLc .

Then the previous tensors3, X define a Jacobi structure on the manifoldS3 which is
the Jacobi structure defined by the contact structure defined onS3 by the contact 1-form
θ = − 1

2i Tr(σ32L).
It is simple to show that the previous Jacobi structure, when restricted toS2, gives the

standard Poisson structure onS2. Indeed,3 is invariant under left translations on the group
SU(2).

BecauseX = XL3 is a generator of the right action, the left action projects onto an
action onS2. The Poisson bracket induced onFX is invariant under this action. OnS2 all
SO(3) invariant bivector fields are multiple of each other.

Now we consider the cotangent group ofSU(2) without the zero section. We will denote
it by T ∗0 SU(2). We will identify it with the productSU(2)×R3

0, whereR3
0 = R3− {0}, by

using left translations again. Then

T ∗0 SU(2) ∼= SU(2)× R3
0. (7)

We will consider the constant rank Poisson structure onR3
0 obtained from the identification

R3
0
∼= S2 × R+. We will denote this Poisson tensor by32 and it coincides again with the

canonical linear Poisson structure on the dual of the Lie algebra ofSU(2). Then we define
the following objects,

3 = 31+ ∂

∂r
∧X1− er32 X = X1 (8)

where31, X1 denotes the Jacobi structure onSU(2) defined above, (6), andr denotes
the radial coordinate inR3

0. We must point out that the Jacobi structure thus defined is a
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non-trivial superposition of a contact and a Poisson structure. In fact this Jacobi manifold is
non-transitive, i.e.\(T ∗M)+〈X〉 does not spanTM. It is well known that Jacobi structures
obtained from contact and/or co-symplectic manifolds must be transitive. Thus, the Jacobi
structure defined above does not fall into any of the previous geometric categories.

2.4.2. Locally conformal symplectic manifolds.Another interesting example of Jacobi
manifolds is provided by the class of locally conformal symplectic manifolds. Such
manifolds are characterized by a non-degenerate 2-form8 and a closed 1-formω, called
the Lee form of the structure, verifying (see [Co86] and references therein),

d8 = ω ∧8. (9)

We can define a map[ sending vectors into 1-forms by contraction with8. Then the tensors
3 = 8 ◦ [−1 andX = [−1(ω) define a Jacobi structure.

There are abundant examples of genuine locally conformal symplectic manifolds. We
will simply quote the following [Co86]. LetH(r, 1) denote the Heisenberg group of
dimension 2r + 1. We will denote its coordinates byqi , pi , i = 1, . . . , r, and s. We
will now consider the extensionH(r, 1)× R with the extra coordinate denoted byt . Then
we define on this manifold the 2-form,

8 = dqi ∧ dpi + (ds − pi dqi) ∧ dt.

It is now obvious that d8 = dt ∧8 and8 defines a locally conformal symplectic structure
with Lee form dt . The Jacobi structure defined by the locally conformal symplectic structure
(8, dt) is given by the tensors:

3 = ∂

∂qi
∧ ∂

∂pi
+ ∂

∂t
∧ ∂

∂s
− pi ∂

∂pi
∧ ∂

∂s
X = ∂

∂s
. (10)

We will not address here the mechanical interpretation of this structure but we will consider
the quotient of this manifold (diffeomorphic toR2r+2 by the natural right action of the
subgroup0(r, 1) × Z of H(r, 1) × R) given by those elements with integer coordinates.
It is a simple computation to show that8, dt are invariant with respect to the action
of the discrete subgroup0(r, 1) × Z, hence it passes to the quotient spaceN(r) × S1 =
(H(r, 1) × R)/(0(r, 1) × Z) inducing on this compact nilmanifold a locally conformal
structure with very peculiar characteristics. For instance it is known thatN(r) × S1 can
have no K̈ahler structures, and ifr > 2 then it cannot have symplectic structures either
[Co86].

Other examples of locally conformal symplectic manifolds obtained by quotienting
nilpotent or solvable groups with remarkable properties are discussed for instance in [Fe88],
[An88].

3. Generalized reduction of Jacobi manifolds

3.1. Reduction of commutative associative algebras

The generalized reduction process can be described better in the algebraic setting of
commutative associative algebras. This way of thinking exploits the duality among
topological spaces and the correspondings algebras of functions defined on them.

The idea is to obtain a reduced algebra out of a given oneA combining two elementary
processes:
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—First, ‘choosing a submanifold’, by definition this consists in choosing a quotientB

of the algebraA. The projection mapπ : A → B defines an idealI as kerπ = I and
A/I = B. Thus, ‘choosing a submanifold’ is equivalent to fixing an idealI of A.

—The second process, ‘quotienting out an equivalence relation’, by definition consists
in choosing a subalgebraAI of A/I . We will call the algebraAI a reduction of the algebra
A.

Notice that there are two choices involved in the definition of the reduced algebra
AI , the choice ofI and of the subalgebraAI itself. This can be made more explicit as
follows. The inverse image of the subalgebraAI defines a subalgebraA′ = π−1(AI ) of
A. Thus, the order in which the two processes are performed can be reversed realizing that
AI = A′/A′ ∩ I . Then we can first select a subalgebraA′ of A and then an idealI ′ of
A′ and defineAI = A′/I ′. The relation between the idealI and I ′ is that I is the ideal
generated byI ′, i.e. I = AI ′. We see in this way the equivalence between the two ways of
constructing the reduced algebraAI and the dependence ofAI in the choice of a subalgebra
A′.

It is obvious that the reduction process can be repeated a number of times using, each
time, an idealIa of the reduced algebraAIa−1 and a subalgebraAIa of the quotient algebra
AIa−1/Ia, a = 1, . . . , n, with AI0 = AI . It is obvious from the previous remark that we can
reorganize the idealsIa and the subalgebrasAIa to obtain a unique idealJ such thatAIn is
a subalgebra ofA/J . Thus the reduction process can always be restricted to the two steps
described above.

The previous ideas can be refined if we suppose that the algebraA carries some
additional structure. For instance we can suppose thatA carries a Lie algebra structure
[., .] (not necessarily compatible with the associative product). Then if we are given an
ideal I as before (with respect to the associative structure), we would like to choose the
subalgebraAI of A/I such that it will inherit a Lie algebra structure, reproducing in this
way the structures in the original algebraA. Let us assume thatA′ is simultaneously a Lie
subalgebra of(A, [., .]) and a subalgebra of(A, ·). Now we will suppose thatA′I ∩ I is an
ideal with respect to the associative structure and an invariant Lie subalgebra ofA′, then it
is obvious that the quotient algebraAI = A′/A′ ∩ I is a subalgebra ofA/I and carries a
Lie algebra structure. Thus the reduced algebraAI can also be called a reduced Lie algebra
for A.

From the above considerations it is obvious that the conditions imposed on the
subalgebraA′ are very tight. This shows that the enormous freedom we have to construct
reduced algebras is only apparent. We will show in the coming section how to find adequate
subalgebrasA′ for Jacobi algebras.

Before that we will briefly analyse the reduction of dynamics. By definition, dynamical
systems on algebras are derivations of the algebra. Thus it is obvious that ifD is a
derivation of an associative commutative algebraA and we want to reduce both the algebra
and the dynamics, the subalgebraA′ and the idealI must be invariant with respect toD,
i.e. D(I) ⊂ I , D(A′) ⊂ A′. In this case it is obvious thatD induces a derivationDI on
the reduced algebraAI that will be called the reduced dynamic induced byD on AI .

3.2. Reduction of Jacobi manifolds

We will apply the ideas in the previous section to the algebra of smooth functions on a
Jacobi manifoldM. Thus, the above algebraA will now beF . We will choose an ideal of
the associative commutative algebraF that will be denoted now asJ , i.e. FJ ⊂ J and
we shall assume thatLXJ ⊂ J , i.e.J is X-invariant.



Reduction of Jacobi manifolds 2791

With the idealJ we can associate as before the short exact sequence of associative
commutative algebras

0→ J → F → F/J → 0.

The idealJ allows us to choose directly the subalgebraA′ used to complete the
reduction process. This subalgebra is the normalizer ofJ with respect to the Lie algebra
structure [., .] on F which is defined as

NJ = {f ∈ F |[f,J ] ⊂ J }. (11)

The following propositions are devoted to show thatNJ verifies all the properties required
in the reduction process. We must remark about the crucial role played by the invariance
of J with respect toX in the proof of some of them. In particular this means that the
reduction process as discussed here will not work for an arbitrary Lie algebra structure on
an associative commutative algebra.

Proposition 6. NJ is a Lie subalgebra of(F , [., .]).

Proof. Is an immediate consequence of the Jacobi identity for [., .], because forf, g ∈ NJ ,

[[f, g],J ] = [[g,J ], f ] + [[J , f ], g] (12)

the term inside the first bracket on the right-hand side of the previous equation (12), is in
J becauseg ∈ NJ . Then becausef ∈ NJ we obtain that the first term is inJ . The same
argument applies to the second term in the right-hand side of (12). �

Proposition 7. The subalgebraNJ is X-invariant, i.e.LXNJ ⊂ NJ .

Proof. Let f be a function inNJ andh a function inJ . BecauseX is a derivation of
[., .], we have,

LX[f, h] = [LXf, h] + [f,LXh].

Then,

[LXf, h] = LX[f, h] − [f,LXh]

is in J because [f, h] andLXh are inJ . �

Proposition 8. The subspaceNJ is a subalgebra ofF with respect to the associative
commutative structure·.

Proof. Let h be a function onJ andf1, f2 two arbitrary functions onNJ . Then,

[f1f2, h] = f1[f2, h] + f2[f1, h] − f1f2LXh.

The two first terms on the right-hand side of the previous equation belong toJ because
fi are inNJ , and the last term is also contained inJ becauseJ is X-invariant and is an
ideal, hencef1f2 is in NJ . �

Proposition 9. NJ ∩ J is an invariant Lie subalgebra ofNJ , i.e.

[NJ ∩ J ,NJ ] ⊂ NJ ∩ J .
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Proof. Let f be inNJ ∩J andg in NJ . Thenf is inNJ and then proposition 6 implies
that [f, g] ∈ NJ , but [f, g] is also inJ because of the definition of the normalizerNJ
(11). Then, [f, g] ∈ NJ ∩ J .

Now if h1, h2 are inNJ ∩ J , then [h1, h2] is in NJ becauseh1, h2 are inNJ and
proposition 6. On the other handh2 ∈ J , but h1 ∈ NJ , then [h1, h2] ∈ J . Hence
[h1, h2] ∈ NJ ∩ J . �

Proposition 10. The subspaceNJ ∩J is an ideal of the associative commutative algebra
NJ .

Proof. Let f be inNJ ∩ J and g ∈ NJ . Then,f ∈ J and gf ∈ J becauseJ is an
ideal. Moreover, proposition 8 implies thatNJ is a subalgebra ofF with respect to·, then
gf ∈ NJ and the conclusion follows. �

Thus we can state the following theorem.

Theorem 3. Let (M,3,X) be a Jacobi manifold andJ an ideal of the associative
commutative algebra of smooth functionsF on M. Let us suppose thatJ is X-invariant.
Then, the quotient spaceNJ /NJ ∩J inherits a Jacobi algebra structure induced from that
of F . Moreover, if there is a smooth manifoldR such thatF(R) = NJ /NJ ∩ J , thenR
inherits the structure of a Jacobi manifold, the bracket among functions given by the bracket
of the Lie algebra structure induced inNJ /NJ ∩ J .

The algebraFJ = NJ /NJ ∩J will be called the reduced algebra of the Jacobi algebra
F with respect to the idealJ and the Lie bracket on it will be denoted by [., .]J . If the
associative commutative structure onFJ = NJ /NJ ∩J defines a smooth manifoldR, the
reduced structure defined on this quotient manifoldR will be called the reduction of the
Jacobi manifoldM.

Proof. We see that because of proposition 9, the Lie algebra (proposition 6)NJ admits
NJ ∩J as an invariant Lie subalgebra, thereforeNJ /NJ ∩J is a Lie algebra. Moreover,
because of proposition 10,NJ ∩J is an ideal ofNJ with respect to its associative structure
(proposition 8) and the quotientNJ /NJ ∩J is an associative commutative algebra. Finally
the derivationX passes to the quotient because of proposition 7. Thus we have on the
reduced algebraNJ /NJ ∩J an associative and a Lie algebra structure. It remains to show
that they define a Jacobi algebra. This follows from the following lemma.

Lemma 1. Let D be a differential operator of orderr on the associative commutative
algebraA. If I is an ideal such thatD(I) ⊂ I then, the linear operator̄D induced byD
on the quotientA/I is again a differential operator of order6 r.

Proof. The operatorD̄(x + I ) = D(x)+ I defined onA/I verifies that

δ(x̄)D̄ = δ(x)D
for all x ∈ x̄ = x + I . Then,

δ(x̄)r+1D̄ = δ(x)r+1D = 0

becauseδ(x)r+1D = 0 (D is of orderr). �
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Then we conclude the proof of the main theorem, noting that the operatorDf given by
(1), leaves invariantNJ for all f ∈ NJ (proposition 6), thenDf is a differential operator
of order 1 inNJ for all f ∈ NJ . Moreover,J is invariant for eachDf , f ∈ NJ .
Thus the operatorDf induces a differential operatorDf of order 1 in the quotient algebra
NJ /NJ ∩ J . By definition of the Lie bracket in the reduced algebra, we have,

Df (ḡ) = [f̄ , ḡ]J .

Thus the Lie bracket [., .]J defines a skew-bidifferential operator of order 1, hence a Jacobi
structure. Finally, if the reduced algebra is the algebra of functions of a smooth manifold
R, theorem 2 implies thatR is a Jacobi manifold. �

Remark. It is important to remark that there is not a simple criterion to recognize if the
reduced algebraFJ is the algebra of functions of a smooth manifold. An alternative road
could be taken considering the reduction of topological algebras (for instanceC∗-algebras).
In such a case it is clear that with the obvious modifications the previous theorem still
works. Nevertherless, we must realize that this does not help us to obtain a geometrical
interpretation of Jacobi manifolds because the smooth structure will be obtained by selecting
a subalgebra on the algebra of functions which is not provided by the theorem. In some
particular situations, however, it is possible to prove that there exists a reduced manifold.
Essentially all these situations use a slicing theorem for group actions (see for instance
section 4.2).

3.3. Reduction by a submanifold

The canonical way of defining ideals in spaces of functions is by fixing subspaces. Let
6 be an embedded closed submanifold ofM and we denote byJ6 the ideal of smooth
functions vanishing on6, J6 = {f ∈ F |f |6 = 0}. ThenF(6) ∼= F(M)/J6 .

It is clear thatJ6 is X-invariant iff 6 is invariant under the flow ofX or equivalently,
if X|6 ∈ T6. The normalizerN6 of J6 consists of functionsf such that the operator
Df leavesJ6 invariant. It is simple to check that this is equivalent to asking whether the
Hamiltonian vector fieldXf is tangential to6. Recall that because of proposition 7,X also
induces a derivation of the normalizerN6 .

Some terminology is convenient now. Functions inJ6 will be called constraint
functions and functions inN6 will be called first-class functions. Functions inN6 ∩ J6
will be called first-class constraints and constraints which are not inN6 ∩J6 will be called
second-class constraints. First-class constraints define Hamiltonian vector fields which are
tangential to6 but because of proposition 1 and proposition 9 we have that the distribution
D6 generated by Hamiltonian vector fields corresponding to first-class constraints is an
integrable distribution. It defines a foliation ofM whose restriction to the submanifold6
will be denoted byL6 .

In general the reduced Jacobi algebra will not be the algebra of smooth functions on
the quotient space6/L6 unless some further conditions are imposed on6. For instance
if 6 is such thatJ6 ⊂ N6 , we will say that6 is first class or co-isotropic. Then if6 is
X-invariant, the reduced Jacobi algebra isN6/J6 . It is not hard to see that in this case
F(6/L6) = N6/J6 and the space of leaves of the foliationL6 inherits a Jacobi structure.
To conclude we can state that if the foliation is regular and6 is co-isotropic, then the
reduced Jacobi algebra is the algebra of functions of the quotient manifold6/L6 .

Simple cases of co-isotropic submanifolds of Jacobi manifolds are provided by the
following examples.
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Let S be a regular level set of the Casimir functions onM. Then it is clear thatJS is
the ideal generated by the subalgebra of Casimirs onM. Then,NS = F because [f,C] = 0
for all f ∈ F , andC an arbitrary Casimir. Hence,JS ⊂ NS = F and the submanifoldS is
co-isotropic. In this particular case, the reduced algebra isF/JS ∼= F(S) and the reduced
manifold isS itself with the natural Jacobi structure induced on it by3 andX.

Another example is provided by submanifoldsS such thatJS +NS = F , then because
NS/NS ∩ JS ∼= NS + JS/JS , then, the reduced algebra will again beF/JS = F(S) and
the reduced manifold will be the submanifoldS again that will inherit a Jacobi structure.
In particular we will obtain as corollaries of this situation most of the results in [Da91], for
instance:

Theorem 4. Let S be a submanifold of the Jacobi manifoldM such that it isX-invariant
and satisfies,

T S +3](T S0) = TM
whereTxS0 = {α ∈ T ∗x M|α(v) = 0, ∀v ∈ TxS} denotes the polar distribution toT S and
3] is the bundle mapT ∗M → TM defined by contraction with3. ThenS inherits in a
natural way the structure of a Jacobi manifold.

3.4. Reduction by a distribution

It is natural to select as a subalgebra in the reduction process not just the normalizer of an
idealJ but a subalgebra of it selected by imposing some invariance requirement. This is
formulated using integrable distributions onF , i.e. Lie subalgebrasD of the Lie algebra of
derivations of the algebraF . Any distribution defines an associative subalgebra of invariant
functions,FD = {f ∈ F |Z(f ) = 0, ∀Z ∈ D}. We will say that the integrable distribution
D is compatible with the Jacobi algebra structure ofF if FD is anX-invariant subalgebra
with respect to both structures, associative and Lie algebra, onF .

It is now obvious that ifJ is an ideal onF , the quotient algebra

FJ ,D = FD ∩NJ /FD ∩NJ ∩ J
is a Jacobi algebra, that will be called the reduced Jacobi algebra ofF with respect toJ
andD. The results are evident from the previous discussion in that ifJ = 0, then the
reduced Jacobi algebra is justFD which amounts to performing only step 2, ‘quotienting by
an equivalence relation’, in the reduction process. One particular instance of this situation
arises when we have a submersionπ : M → N . Then the tangent spaces to the level
sets ofπ define a distributionD and the algebraFD is precisely the algebra generated by
functions of the formf ◦ π , f ∈ F(N). We will see two examples of this situation in the
next section.

4. Examples and applications

4.1. Reduction of the Jacobi manifolds T∗0 SU(2) and J1(Q,R)× R
Let us consider the Jacobi structure defined in section 2.4. Then there are two natural
projections,π : T ∗0 SU(2)→ SU(2) given by the natural projection on the first factor in the
decomposition given by (7), andJ : T ∗0 SU(2)→ R3

0 given by the projection onto the second
factor. Each one of the mapsπ , J defines distributions onT ∗0 SU(2) given by the vector
fields tangent to the corresponding level sets. It is clear that the subalgebras of invariant
functions are generated by the components of the mapsπ andJ themselves, and because
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of (8) it is clear that they areX-invariant Lie subalgebras of the full algebraF(T ∗0 SU(2))
of functions. Thus the contact structure onSU(2) and the Lie–Poisson structure onsu(2)
are obtained by generalized reduction of the Jacobi structure ofT ∗0 SU(2).

We can also consider the locally conformal symplectic structure defined in section 3.4.2.
The Jacobi structure(3,X) onR2r+2 is a particular example of the following situation. Let
Q be a smooth manifold andJ 1(Q,R) × R ∼= T ∗Q × R × R with local coordinates
qi, pi, s, t . This manifold posseses a canonical Jacobi structure with tensors given locally
by (10). Again we have two natural projectionsπ : J 1(Q,R) × R → J 1(Q,R) and
ρ : J 1(Q,R) × R → T ∗Q × R. The spacesJ 1(Q,R) andT ∗Q × R have respectively a
contact and a co-symplectic structure. It is a simple check to show that they are precisely
the reduction of the Jacobi structure in the total space by the corresponding projections. In
this sense we can think of the Jacobi structure inJ 1(Q,R)× R as a non-trivial mixing of
contact and co-symplectic structures.

We will consider as a further example the reduction ofH(r, 1) × R with the Jacobi
structure given by (10) with respect to some submanifolds. For instance, consider the
submanifold defined by the equationqi = 0 and the idealJ defining the submanifold is
the ideal generated byqi . We can easily compute the Jacobi brackets among the generators
qi, pi, s, t of the algebra of functions onH(r, 1)× R using (2),

[qi, qj ] = 0 [qi, pj ] = δij [qi, s] = qi [qi, t ] = 0

[pi, pj ] = 0 [pi, s] = 0 [pi, t ] = 0 [s, t ] = t − 1.

Then the normalizerNJ of J is generated byq1, p1, . . . , q
i, qi+1, pi+1, . . . , q

r , pr , s, t .
The submanifold is co-isotropic and the reduced algebra is generated byq1, p1, . . . ,

qi−1, pi−1, qi+1, pi+1, . . . , q
r , pr , s, t , i.e it is the algebra of functions ofH(r − 1, 1)× R

with its Jacobi structure.
Let us now consider the submanifoldt = 0. Then the normalizer of the ideal generated

by t is generated byqi, pi, t and the submanifold is co-isotropic. The reduced algebra is
generated byqi, pi . Thus it coincides withR2r and the induced Jacobi structure is the
canonical symplectic structure on it.

4.2. Reduction of Jacobi manifolds with symmetry

Let G be a Lie group andg its Lie algebra.

Definition 4. A Lie algebra homomorphismg→ X(M), a 7→ ξa, defines an infinitesimal
action ofG on the Jacobi manifoldM by automorphisms ifξa is a derivation for the Lie
bracket onF . The action ofg onM will be called Hamiltonian ifξa is Hamiltonian for all
a ∈ g.

Notice that the infinitesimal action ofg on M is Jacobian iffLξa3 = 0, [ξa,X] = 0,
for all a ∈ g. We also notice that an action by infinitesimal automorphisms is Hamiltonian
if the Hamiltoniansfa associated with the elements ofg are inFX. Such an action will be
called Jacobian.

We will consider in what follows a Jacobian action of a Lie group on a Jacobi manifold
M. Denoting as before the Hamiltonian defined by the elementa ∈ g by fa we have,

ξa = Xfa .
Hence we define a momentum mapµ : M → g∗ by setting

〈µ, a〉 = fa ∀a ∈ g (13)
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or equivalently,

ξa = 〈µ, a〉X +3(d〈µ, a〉) ∀a ∈ g. (14)

If 0 is a weakly regular value for the momentum mapµ, then 6 = µ−1(0) is a
submanifold ofM. Consider the idealJ6 of functions vanishing on6. It is obvious that
J6 is the ideal onF generated by the functionsfa, a ∈ g and consequently it will be
denoted byJ0.

We will denote byN0 the normalizer ofJ0. It is not hard to check that6 is first class,
i.e. J0 ⊂ N0. Moreover,N0 is the algebra of functions such that their restriction to6
areG-invariant, i.e. ifD denotes the integrable distribution generated byξa, a ∈ g, then
N0 ⊂ FD. The reduced algebra will therefore beF0 = N0/J0 or equivalently the algebra
of functions on6 invariant with respect toD.

If the quotient spaceµ−1(0)/G is a smooth manifold, for instance this will be the case
if G is a compact Lie group acting properly onM, then the quotient algebraF0 can be
identified with the algebra of functions on6/G. Then, the Jacobi reduction theorem allows
us to conclude that the quotient manifold6/G inherits the structure of a Jacobi manifold.

4.3. Reduction of symplectic, Poisson, contact and co-symplectic structures

4.3.1. Reduction of symplectic manifolds.X = 0, 3 non-degenerate. The previous
procedure agrees with symplectic reduction as discussed for instance in [Ma85], [Gr94].
In fact, specializing the discussion in section 4.2 to symplectic manifolds with symmetry
we will obtain the well known Marsden–Weinstein symplectic reduction theorem. Notice
that an action of a groupG is Jacobian ifiξaω = dfa, whereω is the symplectic form
defined by3. Thus the momentum mapµ defined by (13) and (14) coincides with the
symplectic momentum map. Then finally the reduced algebraF0 coincides with the algebra
of functions ofµ−1(0)/G (provided that it actually defines a smooth manifold).

4.3.2. Reduction of Poisson manifolds.X = 0,3 arbitrary. The previous discussion leads
us to the construction of reduced Poisson manifolds as discussed for instance in [Gr94].

If we are given a submanifold6 of a Poisson manifoldM and a subbundleE of TM,
we can define the annihilatorE0

6 of E restricted to6, then we consider the distributionD
generated by Hamiltonian vector fields such that the differentials of their Hamiltonians lie
onE0

6 . If E verifies the conditions stated in [Ma86], then the distributionD is compatible
with the Poisson structure and the reduced Poisson agrees with the Marsden–Ratiu reduction
of M by 6 andE.

4.3.3. Reduction of co-symplectic manifolds.X = 0. Particularizing the results above
to co-symplectic manifolds we will obtain the reduction of co-symplectic manifolds with
symmetry [Al89]. The reduction of co-symplectic manifolds for singular momentum maps
discussed in [Le93] can be described in this setting with the obvious modifications.

4.3.4. Reduction of contact manifolds.X 6= 0. Similarly, reduction of contact manifolds
with symmetry (see for instance [Al89], [Le96]) is included in our previous discussion.

Note added in proof. It was called to our attention that two previous papers have dealt with reduction of Jacobi
manifolds, however from a geometric perspective: Margarida J and Nunes da Costa M 1989 Réduction des variét́es
de JacobiC. R. Acad. Sci., ParisI 308 101–3; and Mikami K 1989 Reduction of local Lie algebrasProc. Am.
Math. Soc.105 686. A forthcoming work will discuss the relationship between them and this paper.
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